127 research outputs found

    The impact of spike timing variability on the signal-encoding performance of neural spiking models

    Get PDF
    It remains unclear whether the variability of neuronal spike trains in vivo arises due to biological noise sources or represents highly precise encoding of temporally varying synaptic input signals. Determining the variability of spike timing can provide fundamental insights into the nature of strategies used in the brain to represent and transmit information in the form of discrete spike trains. In this study, we employ a signal estimation paradigm to determine how variability in spike timing affects encoding of random time-varying signals. We assess this for two types of spiking models: an integrate-and-fire model with random threshold and a more biophysically realistic stochastic ion channel model. Using the coding fraction and mutual information as information-theoretic measures, we quantify the efficacy of optimal linear decoding of random inputs from the model outputs and study the relationship between efficacy and variability in the output spike train. Our findings suggest that variability does not necessarily hinder signal decoding for the biophysically plausible encoders examined and that the functional role of spiking variability depends intimately on the nature of the encoder and the signal processing task; variability can either enhance or impede decoding performance

    Channel noise in excitable neuronal membranes

    Get PDF
    Stochastic fluctuations of voltage-gated ion channels generate current and voltage noise in neuronal membranes. This noise may be a critical determinant of the efficacy of information processing within neural systems. Using Monte-Carlo simulations, we carry out a systematic investigation of the relationship between channel kinetics and the resulting membrane voltage noise using a stochastic Markov version of the Mainen-Sejnowski model of dendritic excitability in cortical neurons. Our simulations show that kinetic parameters which lead to an increase in membrane excitability (increasing channel densities, decreasing temperature) also lead to an increase in the magnitude of the sub-threshold voltage noise. Noise also increases as the membrane is depolarized from rest towards threshold. This suggests that channel fluctuations may interfere with a neuron’s ability to function as an integrator of its synaptic inputs and may limit the reliability and precision of neural information processing

    Variability and coding efficiency of noisy neural spike encoders

    Get PDF
    Encoding synaptic inputs as a train of action potentials is a fundamental function of nerve cells. Although spike trains recorded in vivo have been shown to be highly variable, it is unclear whether variability in spike timing represents faithful encoding of temporally varying synaptic inputs or noise inherent in the spike encoding mechanism. It has been reported that spike timing variability is more pronounced for constant, unvarying inputs than for inputs with rich temporal structure. This could have significant implications for the nature of neural coding, particularly if precise timing of spikes and temporal synchrony between neurons is used to represent information in the nervous system. To study the potential functional role of spike timing variability, we estimate the fraction of spike timing variability which conveys information about the input for two types of noisy spike encoders — an integrate and fire model with randomly chosen thresholds and a model of a patch of neuronal membrane containing stochastic Na+ and K+ channels obeying Hodgkin–Huxley kinetics. The quality of signal encoding is assessed by reconstructing the input stimuli from the output spike trains using optimal linear mean square estimation. A comparison of the estimation performance of noisy neuronal models of spike generation enables us to assess the impact of neuronal noise on the efficacy of neural coding. The results for both models suggest that spike timing variability reduces the ability of spike trains to encode rapid time-varying stimuli. Moreover, contrary to expectations based on earlier studies, we find that the noisy spike encoding models encode slowly varying stimuli more effectively than rapidly varying ones

    Subthreshold Voltage Noise Due to Channel Fluctuations in Active Neuronal Membranes

    Get PDF
    Voltage-gated ion channels in neuronal membranes fluctuate randomly between different conformational states due to thermal agitation. Fluctuations between conducting and nonconducting states give rise to noisy membrane currents and subthreshold voltage fluctuations and may contribute to variability in spike timing. Here we study subthreshold voltage fluctuations due to active voltage-gated Na+ and K+ channels as predicted by two commonly used kinetic schemes: the Mainen et al. (1995) (MJHS) kinetic scheme, which has been used to model dendritic channels in cortical neurons, and the classical Hodgkin-Huxley (1952) (HH) kinetic scheme for the squid giant axon. We compute the magnitudes, amplitude distributions, and power spectral densities of the voltage noise in isopotential membrane patches predicted by these kinetic schemes. For both schemes, noise magnitudes increase rapidly with depolarization from rest. Noise is larger for smaller patch areas but is smaller for increased model temperatures. We contrast the results from Monte Carlo simulations of the stochastic nonlinear kinetic schemes with analytical, closed-form expressions derived using passive and quasi-active linear approximations to the kinetic schemes. For all subthreshold voltage ranges, the quasi-active linearized approximation is accurate within 8% and may thus be used in large-scale simulations of realistic neuronal geometries

    Prognostic importance of the 6 min walk test in light chain (AL) amyloidosis

    Get PDF
    OBJECTIVES: In AL amyloidosis, organ response assessment is based on surrogates (eg, cardiac biomarkers). An objective functional test, such as the 6 min walk test (6MWT), capturing overall clinical improvement, is required. We aimed to evaluate the prognostic impact of the 6MWT at baseline and change following chemotherapy. METHODS: This study evaluated the outcomes of patients who enrolled in a prospective observational study at the UK National Amyloidosis Centre (2012-2017). Patients underwent comprehensive assessments inclusive of blood testing, echocardiogram and 6MWT at baseline and annually thereafter. RESULTS: In total, 799 patients were included within the study. Median baseline 6 min walk distance (6MWD) was 362 m (IQR: 231 m). 6MWD progressively decreased with worsening cardiac disease stage (458 m, 404 m, 331 m and 168 m for cardiac Mayo stages I, II, IIIa and IIIb, respectively (p<0.0001)). In patients with a baseline 6MWT of ≥350 m, the median overall survival was not reached (vs 30.0 (95% CI 23.2 to 36.8) months if <350 m and 5.0 (95% CI 2.8 to 7.2) months if unable to attempt 6MWT (p<0.0001). Following chemotherapy, only patients in a complete haematological response improved their 6MWD by 12 months (p=0.001). Improvement in 6MWD prolonged survival in patients with cardiac amyloidosis (p=0.005). CONCLUSION: The 6MWT is prognostic in AL amyloidosis. A baseline distance of ≥350 m independently predicts better survival. These data suggest that 6MWT has utility in AL amyloidosis for baseline prognosis and assessing response

    Longitudinal strain is an independent predictor of survival and response to therapy in patients with systemic AL amyloidosis

    Get PDF
    AIMS: Cardiac involvement, a major determinant of prognosis in AL (light-chain immunoglobulin) amyloidosis, is characterized by an impairment of longitudinal strain (LS%). We sought to evaluate the utility of LS% in a prospectively observed series of patients. METHODS AND RESULTS: A total of 915 serial newly diagnosed AL patients with comprehensive baseline assessments, inclusive of echocardiography, were included. A total of 628/915 (68.6%) patients had cardiac involvement. The LS% worsened with advancing cardiac stage with mean −21.1%, −17.1%, −12.9%, and −12.1% for stages I, II, IIIa, and IIIb, respectively (P < 0.0001). There was a highly significant worsening of overall survival (OS) with worsening LS% quartile: LS% ≤−16.2%: 80 months, −16.1% to −12.2%: 36 [95% confidence interval (CI) 20.9–51.1] months, −12.1% to −9.1%: 22 (95% CI 9.1–34.9) months, and ≥−9.0%: 5 (95% CI 3.2–6.8) months (P < 0.0001). Improvement in LS% was seen at 12 months in patients achieving a haematological complete response (CR) (median improvement from −13.8% to −14.9% in those with CR and difference between involved and uninvolved light chain <10 mg/L). Strain improvement was associated with improved OS (median not reached at 53 months vs. 72 months in patients without strain improvement, P = 0.007). Patients achieving an LS% improvement and a standard N-terminal pro-brain natriuretic peptide-based cardiac response survived longer than those achieving a biomarker-based cardiac response alone (P < 0.0001). CONCLUSION: Baseline LS% is a functional marker that correlates with worsening cardiac involvement and is predictive of survival. Baseline LS% and an absolute improvement in LS% are useful additional measures of prognosis and response to therapy in cardiac AL amyloidosis, respectively

    Deferred autologous stem cell transplantation in systemic AL amyloidosis

    Get PDF
    High-dose melphalan with autologous stem cell transplantation (ASCT) can induce durable haematological and organ responses in systemic AL amyloidosis (AL). Stringent selection criteria have improved safety of ASCT in AL but most patients are transplant-ineligible. We report our experience of deferred ASCT in AL patients who were transplant-ineligible at presentation but had improvements in organ function after induction chemotherapy, enabling them to undergo ASCT. Twenty-two AL patients underwent deferred ASCT from 2011 to 2017. All had serial organ function and clonal response assessment. Organ involvement and responses were defined by amyloidosis consensus criteria. All patients were transplant-ineligible at presentation, predominantly due to advanced cardiac involvement. All received bortezomib-based therapy, with 100% haematologic response (86% complete response (CR)/very good partial response (VGPR)), enabling reversal of ASCT exclusion criteria. Patients underwent deferred ASCT for haematologic progression (45%) or consolidation (55%). There was no transplant-related mortality. Haematologic responses post-ASCT: CR 50%, VGPR 27%, PR 18%, non-response 5%. In all, 85.7% achieved cardiac responses. Median overall survival (OS) was not reached. Median progression-free survival (PFS) was 54 months. This selected cohort achieved excellent haematologic responses, organ responses, PFS and OS with deferred ASCT. If larger studies confirm these findings, this may widen the applicability of ASCT in AL
    • …
    corecore